При выборе фрезерного станка(CNC Router) с чпу  определитесь:

1. с каким материалом  Вы собираетесь работать. От этого зависят требования к жесткости конструкции фрезерного станка и её типу.

Например, ЧПУ станок из фанеры позволит обрабатывать лишь дерево(в том числе фанеру) и пластики(в том числе композитные материалы - пластик с фольгой). статья почему из фанеры

На фрезерном станке из алюминия можно обрабатывать уже и заготовки цветных металлов, при этом увеличится и скорость обработки изделий из дерева.

Для обработки стали фрезерные станки из алюминия не пригодны, здесь уже нужны массивные станки с литой станиной из чугуна, при этом и обработка цветных металлов на таких фрезерных станках будет с большей эффективностью.

 

2. с размером заготовок и размером рабочего поля фрезерного станка. Это определяет требования к механике станка с ЧПУ.

При выборе станка уделите внимание изучению механики станка, от её выбора зависят возможности станка, а заменить её без существенной переделки конструкции невозможно!

Механика фрезерного ЧПУ станка из фанеры и алюминия зачастую одинаковая. Подробнее ниже по тексту.

Но чем больше размер рабочего поля станка тем более жесткие и дорогие направляющие линейного перемещения потребуются для его сборки .  

При выборе станков для решения задач изготовления высоких деталей, с большими перепадами высот, существует распространенное заблуждение в том, что достаточно выбрать станок с большим рабочим ходом по оси Z. Но даже при большом ходе по оси Z, невозможно изготовить деталь с крутыми склонами, если высота детали больше рабочей длины фрезы, то есть более 50мм.

 Подробнее об этой проблеме, а также о способах её решения в статье Изготовление высоких моделей, методом создания многослойной модели.

 

Рассмотрим устройство фрезерного станка и варианты выбора на примере станков с чпу серии Моделист.

A) Выбор конструкции CNC станка

Существует два варианта построения CNC станков:

1) конструкции с подвижным столом, рисунок 1.
2) конструкция с подвижным порталом, рисунок 2.

 

 

устройство настольного ЧПУ станка

Рисунок 1  Фрезерный станок с подвижным столом

 

Преимущества конструкции станка с подвижным столом - это простота реализации, большая жесткость станка ввиду того, что портал неподвижен и закреплен к раме (основанию) станка.

Недостаток - большие размеры, по сравнению с конструкцией с подвижным порталом, и невозможность обработки тяжелых деталей в связи с тем, что подвижный стол несет на себе деталь. Данная конструкция вполне подходит для обработки дерева и пластиков, то есть легких материалов.

 

 

состав ЧПУ станка

 

рисунок 2  Фрезерный станок с подвижным порталом(портальный станок)

 

Преимущества конструкциифрезерного станка с подвижным порталом:

- жесткий стол, выдерживающий большой вес заготовки,

- неограниченная длина заготовки,

- компактность,

- возможность исполнения станка без стола (например, для установки поворотной оси).

Недостатки:

- меньшая жесткость конструкции.

- необходимость применения более жестких (и дорогих) направляющих (ввиду того, что портал "висит" на направляющих, а не закреплен на жесткой станине станка, как в конструкции с подвижным столом).

 

B) Выбор механики Фрезерного станка с ЧПУ

Механика представлена (см. цифры на рис.1, рис.2 и рис.3):

2 - направляющими

3 - держателями направляющих

4 - линейными подшипниками или втулками скольжения

5 - опорными подшипниками (для крепления ходовых винтов)

6 - ходовыми винтами

10 - муфтой соединения вала ходового винта с валом шаговых двигателей (ШД)

12 - ходовой гайкой

устройство фрезерно-гравировального станка с чпу

 рисунок 3

 

Выбор системы линейного перемещения фрезерного станка (направляющие - линейные подшипники, ходовой винт - ходовая гайка).

В качестве направляющих могут использоваться:

1) роликовые направляющие качения, рисунок 4,5

Рисунок 4

Рисунок 5

Этот тип направляющих попал в конструкции любительских лазеров и станков из мебельной промышленности,рисунок 6

Недостаток - низкая нагрузочная способность и низкий ресурс, поскольку изначально не предназначены для использования в станках с большим количеством перемещений и высокими нагрузками, невысокая прочность алюминиевого профиля направляющих приводит к развалу , рисунок 5 и как следствие неустранимый люфт, что делает непригодным дальнейшей использование станка.

Ещё один вариант роликовых направляющих, рисунок 7, также не пригодный для высоких нагрузок и потому используется только в лазерных станках.

Рисунок 7

2) круглые направляющие, представляют собой стальной вал изготовленный  из высококачественной износоустойчивой подшипниковой  стали со шлифованной поверхностью, с поверхностной закалкой и жестким хромированием, показаны под цифрой 2 на рисунке 2.

Это оптимальное решение для любительских конструкций, т.к. цилиндрические направляющие имеют достаточную жесткость для обработки мягких материалов при небольших размерах станка с чпу при относительно низкой стоимости. Ниже представлена таблица выбора  диаметра цилиндрических направляющих в зависимости от максимальной длины и минимальной величины прогиба.

Некоторые китайские производители дешёвых станков устанавливаю направляющие не достаточного диаметра, что ведет к снижению точности, например, при использовании на станке из алюминия на рабочей длине 400мм направляющих диаметром 16мм приведет к прогибу в центре под собственным весом на 0,3..0,5мм(зависит от веса портала).

При правильном выборе диаметра вала, конструкция станков с их использованием получается достаточно прочная , большой вес валов придает конструкции хорошую устойчивость, общую жесткость конструкции.  На станках размером более метра применение круглых направляющих требует значительного увеличения диаметра для сохранения минимального прогиба, что делает применение круглых направляющих неоправданно дорогим и тяжелым решением.

Таблица1 Рекомендуемые диаметры направляющих.

Длина по оси Станок из фанеры Станок из алюминия для работ по дереву Станок из алюминия для работ по алюминию Цилиндрические направляющие на опоре
200мм 12 12 16 12
300мм 16 16 20 16
400мм 16 20 20 16
600мм 20 25 30 16
900мм 25 30 35 16

 


3) профильные рельсовые направляющие
На смену полированным валам на станках большого габарита приходят профильные направляющие. Использование опоры по всей длине направляющей  позволяет использовать направляющие значительно меньших диаметров.  Но использование  данного вида направляющих накладывает высокие требования к жесткости несущей рамы станка,  поскольку станины из листового дюраля или листовой стали сами по себе не являются жесткими. Малый диаметр рельсовых направляющих требует использования в конструкции станка толстостенной стальной проф трубы или конструкционного алюминиевого профиля большого сечения для получения необходимой жесткости и несущей способности рамы станка .
Использование особой формы профильного рельса позволяет получить лучшую износоустойчивость в сравнении с другими типами направляющих.

 

профильный рельс

Рисунок 8

4) Цилиндрические направляющие на опоре  
Цилиндрические направляющие на опоре  являются более дешевым аналогом профильных направляющих.
Также как и профильные требуют использования в раме станка не листовых материалов , а проф трубы большого сечения.

Преимущества - отсутствие прогиба и отсутствие эффекта рессор. Цена вдвое выше, чем у цилиндрических направляющих. Их использование оправдано при длине перемещения выше 500мм.

 

полированные валы направляющие

рисунок 9  Цилиндрические направляющие на опоре

 

Перемещение можно выполнить как на втулках (трение скольжения) - рис.10 слева, так и с использованием линейных подшипников (трение качения) - рис. 10 справа.

втулки и линейные подшипники

рисунок 10  Втулки и линейные подшипники

 

Недостаток втулок скольжения - износ втулок, приводящий к появлению люфтов, и повышенное усилие на преодоление трения скольжения, требующее применения более мощных и дорогих шаговых двигателей (ШД). Их преимущество - низкая цена.

В последнее время цена на линейные подшипники настолько снизилась, что их выбор экономически целесообразен даже в недорогих хоббийных конструкциях. Преимущество линейных подшипников в меньшем коэффициенте трения по сравнению с втулками скольжения, а, соответственно, большая часть мощности шаговых моторов идет на полезные перемещения, а не на борьбу с трением, что делает возможным применение моторов меньшей мощности.

Для преобразования вращательного движения в поступательное на ЧПУ станке необходимо применение винтовой передачи (ходового винта). За счет вращения винта, гайка движется поступательно. В фрезерно-гравировальных станках может применяться винтовые передачи скольжения и винтовые передачи качения.

Недостаток винтовой передачи скольжения - довольно большое трение, ограничивающее её использование при больших оборотах и приводящее к износу гайки.

Винтовые передачи скольжения:

1) метрический винт. Достоинство метрического винта - низкая цена. Недостатки - низкая точность, малый шаг и низкая скорость перемещения. Максимальная скорость перемещения винта (velocity mm`s per min) исходя из максимальных оборотов ШД (600об/мин). Лучшие драйвера сохранят момент вплоть до 900об/м. При такой скорости вращения можно получить линейное перемещение:

- для винта М8 (шаг резьбы 1,25мм) - не более 750мм/мин,

- для винта М10 (шаг резьбы 1,5мм) - 900мм/мин,

- для винта М12 (шаг резьбы 1,75мм) - 1050мм/мин,

- для винта М14 (шаг резьбы 2,00мм) - 1200мм/мин.

При максимальных оборотах у мотора останется порядка 30-40% от его первоначально указанного момента, и данный режим используется исключительно для холостых перемещений.

При работе на такой низкой подаче повышенные расход на фрезы, уже через несколько часов работы на фрезах образуется нагар .

 

набор механики с метрическими ходовыми винтами, капролоновыми гайками, линейными подшипниками

рисунок 11 Набор механики Моделист2030 с метрическими ходовыми винтами, капролоновыми ходовыми гайками и линейными подшипниками

 

2) трапецеидальный винт. В двадцатом веке занимал лидирующее положение в станках для металлообработки, до появления ШВП. Достоинство - высокая точность, большой шаг резьбы, а следовательно, и высокая скорость перемещения. Следует обращать на вид обработки, чем более гладкая и ровная поверхность винта тем больший срок службы у передачи винт-гайка. Катанные винты имеют преимущество перед нарезными винтами. Недостатки трапецеидальной передачи винт-гайка - достаточно высокая цена в сравнении с метрическим винтом, трение скольжение требует применения шаговых двигателей достаточно большой мощности. Основное распространение получили винты TR10x2 (диаметр 10мм , шаг резьбы 2мм), TR12x3 (диаметр 12мм , шаг резьбы 3мм) и TR16x4 (диаметр 16мм , шаг резьбы 4мм). В станках маркировка такой передачи TR10x2,TR12x3,TR12x4,TR16x4

набор механики с трапецеидальными ходовыми винтами, капролоновыми ходовыми гайками и линейными подшипниками

 

рисунок 7  Набор механики Моделист3030 с трапецеидальными ходовыми винтами, капролоновыми ходовыми гайками и линейными подшипниками

 

Винтовые передачи качения:

Шарико-винтовая передача (ШВП). В Шарико-винтовой передаче трение скольжения заменено на трение качения. Для достижения этого в ШВП винт и гайка разделены шариками, которые катаются в углублениях резьбы винта. Рециркуляция шариков обеспечена с помощью возвратных каналов, которые идут параллельно оси винта.

в ШВП винт с гайкой разделены шариками

Рисунок 12

ШВП обеспечивает возможность работы при больших нагрузках, хорошую плавность хода, значительно увеличенный ресурс(долговечность) за счет уменьшения трения и смазки, увеличенный коэффициент полезного действия(до 90%) за счет меньшего трения. Она способна работать на больших скоростях, обеспечивает выокую точность позиционирования, высокую жёсткость и отсутствие люфта. То есть станки с использованием ШВП обладают значительно большим ресурсом, но имеют более высокую цену. В станках имеют маркировку SFU1605, SFU1610, SFU2005, SFU2010, где SFU -одинарная гайка, DFU - двойная гайка, первые две цифры - диаметр винта, вторые две - шаг резьбы.

набор механики с шарико-винтовой передачей и линейными шарикоподшипниками

рисунок 13  Набор механики Моделист3040 с шарико-винтовой передачей и линейными шарикоподшипниками

 

Ходовой винт фрезерного станка может крепиться следующим образом:

1) Конструкция с одним опорным подшипником. Крепление осуществляется с одной стороны винта гайкой к опорному подшипнику. Вторая сторона винта через жесткую муфту крепится к валу шагового двигателя. Достоинства - простота конструкции, недостаток - повышенная нагрузка на подшипник шагового двигателя.

2) Конструкция с двумя опорными подшипниками в распор. В конструкции используется два опорных подшипника во внутренних сторонах портала. Недостаток конструкции - более сложная реализация по сравнению с вариантом 1). Достоинство - меньшие вибрации, если винт не идеально ровный.

3) Конструкция с двумя опорными подшипниками в натяг. В конструкции используется два опорных подшипника на внешних сторонах портала. Достоинства - не деформируется винт, в отличие от второго варианта. Недостаток - более сложная реализация конструкции, по сравнению с первым и вторым вариантом.

 

Ходовые гайки бывают:

- бронзовые безлюфтовые. Достоинство таких гаек - долговечность. Недостатки - сложны в изготовлении (как следствие - высокая цена) и имеют большой коэффициент трения в сравнении с с гайками из капролона.

- капролоновые безлюфтовые. В настоящее время капролон  получил широкое распространение и все чаще заменяет метал в профессиональных конструкциях. Ходовая гайка из графитонаполненного капролона имеет значительно меньший коэффициент трения по сравнению с той же бронзой.

ходовая гайка из капролона для ЧПУ станка

 

рисунок 14  Ходовая гайка из графитонаполненного капролона

 

- в гайке шарико-винтовой пары (ШВП) трение скольжения заменено на трение качения. Достоинства - низкое трение, возможность работы на высоких скоростях вращения. Недостаток - высокая цена.

шарико - винтовая передача

 рисунок 15  Шарико - винтовая передача

 

Выбор соединительной муфты

1) соединение с использованием жесткой муфты. Достоинства : жесткие муфты передают больший крутящий момент с вала на вал, нет люфта при больших нагрузках. Недостатки: требуют точной установки, так как эта муфта не компенсирует несоосность и перекос валов.

соединительные муфты шагового двигателя

рисунок 16  Жесткая муфта

 

2) соединение с использованием сильфонной (разрезной) муфты. Преимуществом использование сильфонной муфты является то, что ее использование позволяет компенсировать несоосность установки ходового вала и оси шагового двигателя до 0,2мм и перекос до 2,5 градусов, в следствии чего меньшая нагрузка на подшипник шагового двигателя и больший ресурс шагового двигателя. Она также позволяет гасить возникающие вибрации.

разрезные сильфонные соединительные муфты ШД

 рисунок 17  Сильфонная муфта

 

3) соединение с использованием кулачковой муфты. Достоинства : позволяет гасить возникающие вибрации, передают больший крутящий момент с вала на вал, в сравнении с разрезной. Недостатки: меньшая компенсация несоосности, несоосность установки ходового вала и оси шагового двигателя до 0,1мм и перекос до 1,0 градуса.

кулачковые соединительные муфты ШД

 рисунок 18  Кулачковая муфта

 

 

C) Выбор электроники

Электроника представлена (см. рис. 1 и 2):

7 - контроллером шаговых двигателей

8 - блоком питания контроллера ШД

11 - шаговыми двигателями

 Существуют 4х-проводные , 6-ти проводные и 8-ми проводные шаговые двигатели. Всех их можно использовать. В большинстве современных контролеров подключение осуществляется по четырех проводной схеме. Остальные проводники не используются.

шаговый двигатель nema23

 рисунок 20  Шаговый двигатель

 

При выборе станка важно чтоб шаговый двигатель был достаточной мощности для перемещения рабочего инструмента без потери шагов, то есть без пропусков. Чем больше шаг резьбы винта тем более мощные потребуются моторы. Обычно чем больше ток двигателя тем больше и его крутящий момент(мощность).

Многие моторы имеют 8 выводов для каждой полуобмотки в отдельности - это позволяет подключить мотор с последовательно соединенными обмотками либо параллельно. При параллельно соединенных обмотках вам потребуется драйвер на в два раза больший ток, чем при последовательно соединенных обмотках, но при этом будет достаточно в два раза меньшего напряжения.

При последовательном наоборот - для достижения номинального момента потребуется в два раза меньший ток, но для достижения максимальных оборотов - в два раза большее напряжение.

Величина перемещения за один шаг, обычно, 1,8 градуса.

Для 1,8 получается 200 шагов на один полный оборот. Соответственно для вычисления величины количество шагов на мм («Шагов на мм» (Step per mm) ) пользуемся формулой : кол-во шагов на оборот / шаг винта. Для винта с шагом 2мм получим: 200/2=100 шагов/мм.

Подробнее об этом Вы можете прочитать в статье Шаговые двигатели

 

Выбор контроллера

1) DSP контроллеры. Достоинства - возможность выбора портов (LPT , USB, Ethernet) и независимость частот сигналов STEP и DIR от работы операционной системы. Недостатки - высокая цена (от 10 000 руб.).

2) Контроллеры от китайских производителей для любительских станков . Достоинства - низкая цена (от 2500 руб.). Недостаток - повышенные требования к стабильности работы операционной системы, требует соблюдения определенных правил настройки, предпочтительно использование выделенного компьютера, доступны только версии LPT.

контроллер шаговых двигателей ЧПУ

рисунок 21  Контроллер

 

3) Любительские конструкции контроллеров на дискретных элементах. Низкая цена китайских контроллеров вытесняет любительские конструкции.

Наибольшее распространение в любительских конструкциях станков получили китайские контроллеры.

Подробнее - в статье выбор контроллера шаговых двигателей для фрезерно - гравировального станка с чпу.

 

Выбор блока питания

Для двигателей Nema17 необходим блок питания не менее 150Вт

Для двигателей Nema23 необходим блок питания не менее 200Вт

 

Выбор шпинделя для настольного гравировально-фрезерного станка

 

Главная

Магазин станков с чпу